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Current knowledge on Multiple Sclerosis (MS) etiopathogenesis encompasses complex
interactions between the host’s genetic background and several environmental factors
that result in dysimmunity against the central nervous system. An old-aged association
exists between MS and viral infections, capable of triggering and sustaining
neuroinflammation through direct and indirect mechanisms. The novel Coronavirus,
SARS-CoV-2, has a remarkable, and still not fully understood, impact on the immune
system: the occurrence and severity of both acute COVID-19 and post-infectious chronic
illness (long COVID-19) largely depends on the host’s response to the infection, that
echoes several aspects of MS pathobiology. Furthermore, other MS-associated viruses,
such as the Epstein-Barr Virus (EBV) and Human Endogenous Retroviruses (HERVs), may
enhance a mechanistic interplay with the novel Coronavirus, with the potential to interfere
in MS natural history. Studies on COVID-19 in people with MS have helped clinicians in
adjusting therapeutic strategies during the pandemic; similar efforts are being made for
SARS-CoV-2 vaccination campaigns. In this Review, we look over 18 months of SARS-
CoV-2 pandemic from the perspective of MS: we dissect neuroinflammatory and
demyelinating mechanisms associated with COVID-19, summarize pathophysiological
crossroads between MS and SARS-CoV-2 infection, and discuss present evidence on
COVID-19 and its vaccination in people with MS.

Keywords: multiple sclerosis, SARS-CoV-2, COVID-19, virus-host interactions, neuroinflammation, vaccine, virus,
EBV—Epstein-Barr Virus
INTRODUCTION

Multiple Sclerosis (MS) is a chronic, immune-mediated disease of the Central Nervous System
(CNS) characterized by focal demyelination and neurodegeneration. It is the leading cause of non-
traumatic disability in young people, as its onset typically occurs between 20 and 40 years of age.
Although the cause(s) of MS remain unknown, a multifactorial model is widely accepted: diverse
“environmental” factors may trigger the immune attack and disease progression in genetically
susceptible individuals (1–3).
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Solid preclinical and clinical data support the role of viral
infections in MS etiology. It is plausible that MS neurodegenerative
and inflammatory processes start years before the epiphany of
radiological and clinical manifestations (4–7). In this context, viral
agents are good candidates to uncover the disease, as they are capable
to precipitate the dysimmune process via multiple mechanisms:
molecular mimicry, bystander activation, epitope spreading,
autoreactive immune cell survival and immortalization, regulome
modifications (3, 8–10). Thus, the selection and global spread of a
novel human-infecting virus represents an experimental challenge to
study virus-associated diseases, including MS. The research rush
enlightened by SARS-CoV-2 diffusion may help to elucidate the
“known unknowns” of virus-host interactions in immune-mediated
diseases and accelerate drug tailoring. Furthermore, the novel
coronavirus itself—with its pronounced effect on the host’s
immune system—may be directly involved in development, or
divert the natural history, of dysimmune diseases, depicting a new
epidemiological map in the forthcoming years. In this review we will
synopsize present knowledge on SARS-COV-2 and
neuroinflammation, focusing on the crossroads of SARS-CoV-2
infection and MS physiopathology; we will also reassess current
evidence on COVID-19 and SARS-CoV-2 vaccines in people with
MS and discuss a potential inference in MS disease course.
SARS-COV-2 AND NEUROINFLAMMATION

Human-infecting Coronaviruses include four mild pathogenic
strains (229E, NL63, OC43, and HKU1), which cause up to a
third of common cold cases, and three highly virulent agents:
SARS-CoV-1, MERS, and SARS-CoV-2. The latter pathogen has
emerged in China in late 2019 and has quickly become pandemic,
due to its extreme infectivity (11). In the acute phase, most of
infected patients have no or mild symptoms, but up to 15% cases
require hospitalization for a severe interstitial pneumonia, which
has caused, to date, more than 4 million deaths.

COVID-19 is a multifaceted and unpredictable syndrome
whose outcomes are primarily determined by the host’s immune
response. Compared to other respiratory viruses, SARS-CoV-2
elicits a stronger, perduring, auto-aggressive inflammatory
response (12), fueled by a massive cytokine release, causing
coagulation dysfunction and multiorgan failure (13) in severe
cases. The aberrant immune activation is clear-cut in children,
who can suffer of a virus-induced multisystem inflammatory
syndrome (MIS-C) with prominent autoimmune components
(14, 15).

A SARS-CoV-2 neuroinvasive potential has been reported
(16) as for other Coronaviruses (17), that have also been isolated
in brains and cerebrospinal fluid (CSF) of MS patients with
significant frequency (18, 19). Blood-brain barrier pericytes and
astrocytes may represent SARS-CoV-2 entry points (20).
Neurological symptoms are reported in more than 80% cases
during disease history and, opposite to the respiratory distress
syndrome, are more frequent in young people (21). Ischemic
stroke may be a SARS-CoV-2 specific presentation, especially in
people under 50 years of age (22, 23) as a consequence of the
Frontiers in Immunology | www.frontiersin.org 2
hypercoagulation state induced by systemic inflammation.
Besides non-specific symptoms (headache, confusional states,
dizziness, etc.) that are common complications of viral infections
and critical illnesses (24), most of neuro-COVID manifestations
share an immune-mediate substrate. In fact, brain lesions
associated to COVID-19 reflect both vascular and demyelinating
etiologies and are mainly imputable to the intense immune
activation with massive neurotoxic cytokines production (in
particular, IL1-beta and IL6) (25), rather than a direct infectious
cytopathic effect. A prominent example comes from a
neuropathological description of vascular and acute
disseminated encephalomyelitis (ADEM)-like demyelinating
pathology in a COVID-19 patient (26).

Omics studies on brain samples from COVID-19 patients are
pinpointing the neuroinflammatory mechanisms underlying
neurological involvement. Yang et al. (27) performed single-
nucleus transcriptomics and immunohistochemistry of cortex
and choroid plexus of eight COVID-19 brains. First, they
highlighted that, albeit all major brain cell types resulted
affected, glial cells displayed a pro-inflammatory, disease-
specific signature. Second, they underscored significant brain
barrier inflammation in the choroid plexus, a strategic interface
between peripheral blood and cerebrospinal fluid. In COVID-19
brains, choroid barrier cells and glia limitans released
chemokines toward brain parenchyma and promoted
complement activation, fueling neuroinflammation and neural
damages. A similar mechanism was described in MS, where an
activated choroid epithelium in response to peripheral
inflammation acts as a gateway for brain-homing, pathogenic
B and T lymphocytes (28–30). Likely, infiltrating T cells were
found in COVID-19 brain parenchyma, in the absence of SARS-
CoV-2 RNA transcripts, suggesting an aberrant CNS attack by
peripheral immune effectors favored by BBB disruption.

Comparison of transcriptome signatures between COVID-19
brains and chronic CNS diseases (including MS) revealed a
significant intersection of dysregulated genes, particularly in
glial cells. A notable example comes from RIPK1, whose
overactivation in microglia and astrocytes contributes to MS
pathology, particularly in the progressive disease (31). Moreover,
COVID-19 differentially expressed genes are enriched with
GWAS-associated variants of complex neurological traits,
suggesting a possible interaction of the novel Coronavirus to
the initiation or perpetuation of CNS disorders in individuals
who are at risk (27).

Schwabenland et al. (32) found extensive T CD8 cell
infiltration, microgliosis, and increased axonal damage in
COVID-19 comparable to that seen in long-term MS patients.
A disease-specific cluster of CD8+ lymphocytes was present in
the perivascular space, causing vascular immunopathology and
BBB disruption. Indeed, endothelial cells with viral proteins in
the cytoplasm colocalize with innate and adaptive immune
effectors, vascular pathology, and axonal damage. The crosstalk
between cytotoxic lymphocytes and microglial cells peaks in the
formation of microanatomical niches, so-called “microglial
nodules,” endowed with a pervasive pro-inflammatory effect
that extends throughout the brain.
September 2021 | Volume 12 | Article 755333

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bellucci et al. MS and SARS-CoV-2 Interplay
To decipher the underpinnings of neurological symptoms,
Song et al. (33) performed single-cell transcriptomics on
immune cells from the CSF and blood of neuro-COVID-19
patients and healthy donors. They found and increased
activation of CSF T cells, that strongly interacted with overactive
NK and dendritic cells, displaying upregulation of IL-1 and IL-12
pathways and suggesting a coordinated and compartmentalized T-
cell based response to CNS antigens. Also, B cells were enriched in
COVID-19 CSF compared with controls, and their antibody
profile differs from peripheral blood. A subset of intrathecal
antibodies—especially anti-Spike—also targets neural antigens. A
similar approach reported autoantibodies targeting known
antigens (Yo, NMDA receptors) and undetermined epitopes of
myelin, endothelium, astrocytes, and neurons, some of which help
explain clinical features (e.g., seizures) (34).

SARS-CoV-2 is associated to a growing number of para-
infectious and postinfectious neurological conditions that have an
immunological substrate (35–38): in particular, Acute Disseminated
Encephalomyelitis (ADEM) results extremely frequent (39). Para-
infectious ADEM occurrence often correlates with COVID-19
severity, suggesting off-target effects of the hyperinflammatory
response involving brain tissue and vasculature (40). Indeed,
beyond deep white matter demyelination, these cases often
display intraventricular and intraparenchymal hemorrhages (e.g.,
microbleeds), with features of fulminant necrotizing encephalitis
(41–44). Conversely, post-COVID-19 ADEMs appear unrelated to
respiratory involvement and do not differ from those triggered by
other infections, also in terms of prognosis (45, 46). Interestingly,
COVID-19 was shown to trigger an exacerbation of a recent, but
remitted, Coxsackie virus–induced ADEM (47). It was also
suggested that SARS-CoV-2-associated ADEMs have an atypically
frequent involvement of spine—especially spinal gray matter (48).

Literature reviews identified 43 cases of Acute Transverse
Myelitis (49) reported until January 2021 in association with
COVID-19. As the first reports of neurological complications of
SARS-CoV-2 infections did not involve myelitis, such a number
of cases (with an estimated incidence of 0.5 per million) resulted
somehow unexpected. Of interest, no association has been made
between ATM and the other highly virulent beta-coronaviruses,
suggesting a special property of SARS-CoV-2 in triggering spine
demyelination. Patients’ age ranged from 21 to 73 years, male sex
slightly prevailed, and COVID-19 course was prevalently mild. A
third of cases developed neurological impairment within 5 days
from the onset of COVID-19 symptoms, compatible with para-
infectious physiopathology; however, the greatest number of
cases represent postinfectious dysimmune complications, with
a maximum latency of 6 weeks. Twenty percent of patients had
myelitis in the context of an ADEM, which instead involved
mostly women. Longitudinally extensive lesions (as in
Longitudinally Extended Transverse Myelitis, LETM) involving
>3 spinal cord segment appeared typical, occurring in 70% of
COVID-19-associated myelitis cases; in a 28-year old woman,
demyelination involved the entire spine, from the medulla
oblungata to the conus medullaris (50).

More recently, additional and, to some extent, peculiar CNS
demyelinating events linked to COVID-19 have been reported.
Frontiers in Immunology | www.frontiersin.org 3
Zoghi et al. (51) described a case of a 21-year-old male that
developed encephalomyelitis 2 weeks after mild COVID-19. At
admission, he manifested a confusional state with recurrent
vomit, paraparesis, and a T8 sensory level. MRI revealed
scarcely enhancing FLAIR hyperintensities extending from
internal capsules to the cerebral peduncles and pons, marbled-
pattern hyperintensities in corpus callosum, and a longitudinally
extensive transverse myelitis in the cervical and thoracic spine.
CSF analysis showed pleocytosis, hypoglycorrhachia, and
hyperprotidorrhachia, without oligoclonal bands (OCBs).
Image findings and clinical onset (alike area-postrema
syndrome) pointed toward a possible NMOSD, but
Aquaporin-4 receptor (AQP4) and myelin oligodendrocyte
glycoprotein (MOG) antibodies in the serum and CSF were
absent. Treatment with plasma exchange only provided partial
recovery. The case was framed as an atypical ADEM attributable
to a postinfectious dysimmune state. A more stereotypical acute
anti-MOG CNS syndrome following SARS-CoV-2 infection had
been previously described by Zhou et al. (52) characterized by
bilateral, sequential, severe optic neuritis with contemporary
involvement of the cervical and thoracic spine. The finding of
anti-AQP4 antibodies in CSF and serum in a case of post-
COVID-19 encephalomyeloradiculitis also suggests a nexus
between SARS-CoV-2 and neuromyelitis optica spectrum
disorder (NMOSDs) pathogenesis (53, 54)

Rodriguez de Antonio et al. (55) reported the case of a 40-
year-old woman with asymptomatic SARS-CoV-2 infection that
developed, in the late phase of a totally asymptomatic SARS-
CoV-2 infection, hypoesthesia and bladder dysfunction. MRI
revealed a T5-6 lesion; serological essays found the presence of
IgM anti-gangliosides (GD2 and GD3), more commonly seen in
peripheral nervous system inflammatory disorder (such as
Guillain Barrè Syndrome, GBS). Indeed, IgM anti-GD1b were
detected in a post-Covid Acute Motor Axonal Neuropathy
(AMAN) variant of GBS (56). However, whether SARS-CoV-
2-induced demyelination is endowed with distinct features and
biomarkers should be clarified.
COVID-19 VS MS:
IMMUNOPATHOGENETIC CROSSROADS

The above-mentioned immunological pathways dysregulated in
COVID-19 largely overlap withMS pathogenetic mechanisms and
suggest that SARS-CoV-2 infection could act as an environmental
risk factor for disease manifestation in susceptible individuals.
This hypothesis is reinforced by clinical and experimental studies
that unravel host-pathogen interactions underlying COVID-19 at
both virological and genetic levels, intersecting those dealing with
the major components of MS etiopathogenesis.

Based on the principle that genetic data inform on
multifactorial disease pathogenesis, a system biology study found
significant interactions of SARS-CoV-2 with genes associated with
autoimmune diseases and comorbidities that predispose to a severe
COVID-19 course. The strong association with autoimmunity was
peculiar of SARS-CoV-2 with respect to other Coronaviruses and
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respiratory viruses, in line with the exuberant and autoaggressive
immune response that causes COVID-19. Interestingly, MS-
associated genes were the most enriched in SARS-CoV-2 host’s
interactors, suggesting pathophysiological overlaps that are worth
investigating (57). In particular, there are three pivotal crossroads
of MS and COVID-19 immunological substrates: the type-1 IFN
(IFN-I) response, the TH-17 axis, and the inflammasome pathway.

In MS patients, an impairment in IFN-I response has been
widely described at the genetic and transcriptional levels and is
confirmed by three decades of successful treatment with IFN-1B
formulations (58, 59). Studies on severe COVID-19 patients
highlighted a defective IFN-I production, with a consequent
delayed and unrestrained T cell response, enhancing both viral
spread and cytokine release that predispose to multiorgan failure
(60, 61). Notably, the use of beta-interferons decreases the risk of
COVID-19 in people with MS (pwMS) (62). Coronaviruses can
interfere with IFN-I production and actions through multiple
non-structural proteins. It has been demonstrated that SARS-
CoV-2 antagonizes IFN-I secretion and signaling more efficiently
than SARS-CoV-1 and MERS-CoV (63). These intrinsic viral
properties are detrimentally boosted if the host itself displays a
blunted IFN system: in severely ill COVID-19 patients, Zhang
et al. found an enrichment in genetic variants accounting for an
impairment of IFN-I immunity (64), while Bastard et al. reported
augmented levels of IFN-I neutralizing antibodies (65). These
data may suggest that people at risk for developing MS (just as
pwMS not receiving DMTs) may be more susceptible to the
virus-induced dysimmune effects; likewise, the repurposing of
IFN-beta from MS armamentarium for the fight against
COVID-19 has a biological rationale if administered early after
the infection, as an exogenous “supplement” to aid viral
suppression (35, 66).

Th1 cells producing IFN-gamma and Th17 cells secreting IL-
17 are the principal T lymphocyte subsets involved in MS
pathogenesis, to the point that most immunomodulating
therapies aim to restore immunological balance interfering
with their induction and skewing towards the Th2 axis (2).
Interest in Th17 cells in MS is growing, since their discovery in
2005. They are induced by IL-6 produced by pathogenic B cells,
contribute pleiotropically to CNS inflammation, and are the
principal player of the brain autoimmune attack induced by
intestinal microbiota alteration in pwMS (36–38). Severe
COVID-19 cases exhibit high levels of IFN-g and IL6 and a
skewing towards Th17 cells (67, 68); moreover, IL-17 levels
correlate with clinical severity, suggesting the opportunity of
therapeutically inhibiting the Th17 axis (69). A sophisticated
virus-host interaction analysis discovered that IL-17 receptor A
(IL17RA) physically interacts with SARS-CoV-2 Orf8 protein,
and highlighted a genetic locus associated with COVID-19
severity whose biological effects relate to IL-17 actions (70).
Also, SARS-CoV-2 is capable of infecting enteric cells (71),
and microbiota alterations correlate with clinical outcomes
(72), so that the contribution of a gut-lung axis including Th17
cells in COVID-19 has been postulated (73). These elements
make likely the possibility that Th17 axis could be involved in
SARS-CoV-2 effects in pwMS.
Frontiers in Immunology | www.frontiersin.org 4
Inflammasomes are cytosolic multimeric complexes driving
the inflammatory response of the innate immune system. They
activate Il-1Beta and IL-18 upon sensing of endogenous (tissue
damage) or exogenous (e.g., infections) stressors by pattern-
recognition receptors (PRRs), such as NLRP3. In MS, NLRP3-
inflammasome significantly contributes to the chronic
inflammation led by microgl ia l ce l l s that propels
neurodegeneration. IL1B gene is upregulated in blood and
brain lesions of primary progressive MS patients (74) due to
an NLRP3 overactivity, on which IFN-I may interfere (75).
Moreover, gain-of-function variants in NLRP3 and IL1B genes
correlate with severity and progression of MS (76). Since the
SARS-CoV-1 E, ORF3a, and ORF8b proteins directly activate
NLRP3-inflammasome, similar effects are hypothesized in
SARS-CoV-2. An increased potency of ORF3a-NLP3
interaction may underly the augmented virulence of the novel
coronavirus (77–79). Being the activation of “danger sensors”
among the early activators of an immunopathogenetic process, it
is plausible that the immune response following SARS-CoV-2
infection could contribute to neuroinflammation in genetically
susceptible people, precipitating MS onset or even impacting on
progression (80).
SARS-COV-2 AND MS-ASSOCIATED
VIRUSES: PARTNERS IN CRIME?

Indirect mechanisms through which SARS-CoV-2 infection may
interfere with MS course may be sustained by the interactions with
long-studied MS-associated pathogens: the Herpesviridae members
Epstein Barr Virus and Human Herpes Virus 6 (HHV-6), as well as
the Human Endogenous Retroviruses (HERVs).

A longstanding, quasi-causal evidence supports the Epstein-
Barr Virus (EBV) as a necessary environmental interactor (81)
involved across the whole spectrum of MS (82). High levels of
antibodies against EBV antigens (EBNA1 and VCA) at least
triplicate the risk of developing MS; a history of infectious
mononucleosis (IM), the clinical syndrome caused by a post-
childhood EBV infection, exerts a similar effect (83, 84). The
prevalent hypothesis to explain these sero-epidemiological
evidences is an augmented immune reactivity reflecting
insufficient control of viral infection, due to EBV-specific T
lymphocyte exhaustion or scarcity: the quasi-persistent active
state in periphery and CNS promotes neuroinflammation and
disease progression (85–90).

Lymphopenia and T cell exhaustion, which characterize
COVID-19, may impair the control of EBV latency in B cells
[also within meningeal follicles (86)], favoring viral reactivation,
rising up anti-EBV titers and exacerbating the hyperinflammatory
state. Indeed, severe COVID-19 cases display higher prevalence
and levels of EBV viremia compared with non-COVID critically ill
subjects; the virus’s DNA titers and anti-EBNA1 IgM levels
correlate with increased inflammatory markers (C-reactive
Protein, IL-6), disease severity, and prognosis (91–93). Paolucci
and colleagues screened for opportunistic viral infections 104
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moderate to severe COVID-19 cases: EBV was the only detected
(95.2% of the ICU patients and in 83.6% Sub-ICU patients).
Reactivation correlated with reduction of CD8+ T and NK
lymphocyte count, supporting the hypothesis of a defective cell-
mediated control (94).

A SARS-CoV-2 -EBV interaction may extend beyond the acute
phase and play a role in the pathogenesis of “long-COVID,” or
post-COVID-19 syndrome. It manifests with lingering symptoms
and/or delayed or long-term complications beyond 4 weeks from
the acute phase. Most patients suffer of fatigue or muscle weakness,
sleep difficulties, and anxiety or depression, but organ-specific
sequelae also play a part (94, 95). Neuropsychiatric involvement
appears to be typical and frequent enough that a more specific
qualifier of “Post-COVID-19 Neurologic Syndrome” (PCNS) has
been coined (96, 97). Gold and colleagues found that two-thirds of
COVID-19 long-haulers had EBV reactivation and speculated this
might contribute to clinical manifestations.

An integrated, molecular portrait of post-COVID-19
syndrome pathogenesis is still lacking; however, in patients’ and
clinicians’ descriptions of this heterogeneous condition,
similitudes with Myalgic Encephalomyelitis/Chronic Fatigue
syndrome (CFS) stand out (98). This syndrome comprehends
extreme physical and cognitive impairment that are typically
preceded by an acute infectious disease: EBV and HHV-6 A/B
have been historically implicated (99–102). Mechanisms
contributing to its pathogenesis include immune exhaustion and
dysregulation subsequent to an exuberant acute response to the
pathogen (increased cytokines, presence of autoantibodies), a
multisystemic hypometabolic state with redox imbalance,
intestinal dysbiosis, and diffuse neurological dysfunction (pain
hypersensitivity, subtle CNS neuroinflammation with glial cell
dysmetabolism, impaired brain connectivity) (103–106). Fatigue
concerns more than 75% pwMS during disease course—including
the prodromic phase (107)—and is frequently considered as the
worse symptom (108, 109). Nonetheless, it is often overlooked by
clinicians, also because no drug has proven to be effective in tackling
it. A recent randomized clinical trial demonstrated no difference
between placebo and three commonly prescribed symptomatic
medications (amantadine, modafinil, methylphenidate) in easing
MS-related fatigue (110). Beyond clinical similarities—alsomirrored
by neuroimaging functional studies (111)—there are significant
molecular overlaps between CFS and MS, as objectively assessed
by immunological studies (112–114). A notable example is the high
frequency of circulating CD8+ mucosal-associated invariant T cells
(MAIT) in both CFS and MS patients (115), where they bridge
intestinal dysbiosis to CNS inflammation (116–118). Given the
novelty and the expected high prevalence of post-COVID-19
syndrome, research on CFS and MS-associated fatigue
pathomechanisms will hopefully gain momentum, paving the way
toward targeted therapies for these conditions.

EBV reactivation could be as a simple byproduct of COVID-
19 unbalanced immunity; however, data are emerging that show
probable virus-virus synergies at the expense of the host. An in-
silico analysis by Vavougios (119) dissected overlapping host
gene signatures between SARS-CoV-2 and other co-pathogens.
EBV-induced expression pattern was the most significantly
Frontiers in Immunology | www.frontiersin.org 5
enriched, suggesting a mechanistic interplay between the two
viruses operating at the host’s transcription level. The interaction
nodes shared by the two viruses include Heat-Shock Proteins
(HSPA8, HSPA5, HSPD1, etc.), ribonucleoproteins, and post-
translational regulators (SYNCRIP, SERBP1, SSBP1).

EBV may also enhance SARS-CoV-2 infectivity. The
expression of ACE2, the principal SARS-CoV-2 surface receptor,
is regulated by EBV’s ZTA transcription factor and peaks when
EBV enters the lytic replicative cycle in epithelial cells. Its
reactivation proved to facilitate ACE2-dependent coronavirus
infection on pseudovirus assays (120). Neuropilin-1 (NRP1) has
been recognized as a coreceptor of SARS-CoV-2, binding the Spike
protein after its cleavage by proteases (121, 122). Interestingly,
NRP1 also facilitates EBV cell entry, and its interaction with EBV-
gB protein activates intracellular kinase pathways resultant in a
positive feedback on viral infectivity (123). This transmembrane
protein is expressed in various immune cells. Most of studies
focused on Tregs, whose action ends in the modulation of Th1 and
Th17 subsets (124, 125). Deletion of NRP1 exacerbates
Experimental Autoimmune Encephalitis, the most used murine
model of MS (124). Moreover, its expression is augmented in
endothelial cells of active MS lesions (125) in response to the
blood-brain barrier (BBB) disruption.

Alike to EBV, HHV6 is a neurotropic and lymphotropic
pathogen that persists lifelong in the host as an episome or
through chromosomal integration in glial cells. High titers of
anti-HHV6 antibodies are epidemiologically associated to MS
development risk, both alone and by interacting with anti-
EBNA1 titers (126). Several HHV-6 pathogenetic mechanisms
have been pinpointed in MS: enhancing on-site inflammation in
MS lesion, mimicry toward myelin antigens, direct provocation
of apoptosis of glial cells and consequent epitope spreading, and
induction of neuronal death due to glutamate excitotoxicity (10).

Evidence on HHV-6 reactivation during SARS-CoV-2
infection is less solid, and the Herpesvirus is mainly associated
to COVID-19 dermatological manifestations (127). Nonetheless,
a neurological event associated to SARS-CoV-2/HHV6
interaction was described by Jumah et al. (128): a 61-year-old
man experiencing lymphopenia and hypogammaglobulinemia
during COVID-19 developed a para-infectious acute myelitis.
CSF analysis showed a high HHV-6 viremia, and anti-MOG
antibodies were detected in serum. In this case, the two viruses—
individually linked to MOG-associated diseases (52, 129)—might
have synergized in triggering immune-mediated demyelination.
A direct interaction alike to that seen for HHV-6A with EBV in
MS is therefore conceivable (130).

HERVs result from the integration of ancient exogenous
retroviruses into human genome. Their transcription is finely
regulated through epigenetic mechanisms and particularly affected
by other viruses’ infection, including EBV and HHV-6. Among
HERVs, HERV-W has been linked to MS pathogenesis thus being
also named MS-Related Virus (MSRV). Notably, HERVs are also
associated to CFS (131). When expressed, HERV-W Env protein
acts as a superantigen, activates CNS-oriented T lymphocytes and
microglia, sustaining a proinflammatory state and impairing myelin
homeostasis (10). These mechanisms translate to MS relapses and
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progression, to the point that MSRV proteins have been candidate
as biomarkers and therapeutic targets in MS (132, 133).

Charvet and colleagues demonstrated that SARS-CoV-2
activates HERV W and HERV-K Env transcription in vitro
through the interaction of Spike with ACE2 on T lymphocytes
(134). Accordingly, ENV is strongly expressed in blood cells of
COVID-19 patients but not in healthy donors, and its level
correlates with inflammatory mediators (IL-6, IL-17, and
CXCR1), and with markers of T-cell exhaustion (e.g., PD1).
Being predictive of a severe prognosis, ENV expression could
play a role in immune overactivation and contribute to acute and
chronic COVID-19 complications (135). In this context, HERVs
could act as endogenous modulators of SARS-CoV-2/host
interaction, helping to explain the extreme inter-individual
variability in COVID-19 manifestations (136). Along this line,
potential interplays of Herpesviruses and HERVs with SARS-
CoV-2 might also be conceivably supposed to impact on MS
pathogenesis and affect disease course.
COVID-19 AND SARS-COV-2 VACCINES
IN PEOPLE WITH MULTIPLE SCLEROSIS:
WHAT WE KNOW

Relevant to our discussion is the possible role of SARS-CoV-2
infection in unveiling definite MS. To date, four cases have been
described in literature, in which, during or post COVID-19,
neurological syndromes in young people (three women, one
man) appeared as typical onset of MS fulfilling McDonald’s 2017
criteria (Table 1). Such event cascade may be (a) purely casual,
i.e., MS onset occurred by chance after SARS-CoV-2 infection;
(b) non-specific, i.e., COVID-19 denotes the increase morbidity
observed in people that will in a few years develop MS—so-called
“MS prodrome” (141); (c) specific, i.e., SARS-CoV-2 infection
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acts as an environmental risk factor for MS. Of course, given the
youth of the novel Coronavirus, evidence is insufficient to take
conclusions, and large-scale, case-control studies are awaited
to answer.

The immune activation consequent to a microbial infection
often embraces some grade of non-specific systemic inflammation
that is known to enhance autoimmunity in people with MS
(pwMS) and interfere with the disease course (142–144). Upper
respiratory tract infections (URTI), typically caused by
adenoviruses, rhinoviruses, flu viruses, and coronaviruses, have
been extensively proven to trigger both clinical and radiological
MS relapses (145–147). Moreover, Edwards et al. demonstrated
that a serological confirmation of URTI corresponded to a
threefold augment in MS exacerbation risk (145). Precisely,
McDonald’s criteria define relapse as “a monophasic clinical
episode with patient-reported symptoms and objective findings
typical of multiple sclerosis, reflecting a focal or multifocal
inflammatory demyelinating event in the CNS, developing
acutely or subacutely, with a duration of at least 24 hours, with
or without recovery, and in the absence of fever or infection” (148).
Conversely, the term pseudo-relapse refers to recrudescence of
previously experiencedMS symptoms concomitant to an elevation
of body temperature, as during physical activity or infection-
related fever. A pseudo-relapse lasts more than the brief, self-
limiting exacerbation of a focal deficit typical of the Uhthoff’s
phenomenon induced by heat: thus, it is easily distinguished from
common day-to-day fluctuations of chronic symptoms, but the
discrimination from relapses is more challenging (149).

Emerging data show that SARS-CoV-2 infection can trigger
both pseudo-relapses and true relapses. A large community-based
study by Garjani et al. (150) showed that the majority of pwMS
developing COVID-19 reported clinical worsening of pre-existing
neurological symptoms, and 20–35% developed new MS
symptoms, mostly motor or sensory in nature, that could last for
months following the acute infectious phase (thus being
TABLE 1 | Reported cases of MS onset in a temporal relationship with COVID-19 .

Reference Patient
characteristics

Timing COVID-19 Long-
COVID-19

MS onset MRI lesions CSF

Palao et al.
(137)

29-year-old
woman

After 2–3 weeks Mild (Anosmia, dysgeusia,
myalgias)

– Optic neuritis,
pyramidal signs

1 CE optic nerve
1 CE right occipital lobe
1 non-enhancing left temporal
lobe

OCBs
+

Fragoso
et al. (138)

27-year-old
woman

After 6 months Mild (fever, cough, anosmia,
hypogeusia)

Persistent
anosmia

Sensory loss,
pyramidal signs

1 CE frontal
1 CE cervical lesion
3 non-enhancing
periventricular

OCBs
+

Moore et al.
(139)

28-year-old
man

After 10 days from
symptoms onset

Mild (Anosmia, sore throat,
cough, myalgias, headache)

– Internuclear
ophthalmoplegia

1 CE right parietal lobe
1 CE right superior cerebellar
peduncle
1 CE right middle cerebellar
peduncle
>3 non-enhancing
periventricular, corpus
callosum

OCBs
(n=5)

Moghadasi
A.N (140)

31-year-old
woman

Concomitant Mild (anosmia, ageusia) – Optic neuritis >3 non-enhancing
periventricular and pericallosal

OCBs
+
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considerable as true relapses). These attacks were referred as worse
than those experienced with non-COVID-19 infections.
Accordingly, a smaller study from New York University MS
Centre reported a 21.1% recrudescence rate (151). DMTs appear
to be protective towards SARS-CoV-2-induced relapses. Indeed,
pwMS receiving DMTs are less likely to develop newMS symptom
during COVID-19 compared to untreated patients (152). On the
other hand, a possible “protective” effect of COVID-19 on relapse
rate was suggested by Etemadifar and colleagues (153), who
conducted a retrospective study on 125 relapsing-remitting
pwMS, 56 of whom had laboratory confirmed SARS-CoV-2
infection. Only 7.14% of pwMS in the COVID-19 group
experienced a clinical relapse compared with 26.09% of the non-
COVID-19 group. The authors hypothesized that COVID-19-
associated lymphopenia could have a role in containing the
proliferative rate of CNS-targeting T clones. However, no
significant difference emerged in a self-comparison assessment of
each group: relapse rate of each patient was similar for comparable
windows taken before and during the pandemic (i.e., after SARS-
CoV-2 infection, for theCOVID-19 group).This suggests a possible
selection bias: control group included (i)pwMSwith an intrinsically
higher relapse rate and/or (ii) pwMS receivingmostly first-line, less
effective DMTs—which, on the other side, may have reduced their
infection risk.

Indeed, since the beginning of the pandemic, research efforts
have focused on answering urgent questions: (i) Are pwMS more
susceptible to SARS-CoV-2 infection? (ii) What is the clinical
course of COVID-19 in pwMS? (iii) What is the impact of DMTs
on COVID-19 susceptibility and prognosis? After the first
pioneering Italian observational study (62, 154), many others
provided converging results that supported clinical practice and
reassured both neurologists and patients (155). Besides some
discordances among results (mostly imputable to heterogeneity
in cohorts’ characteristics and data collection), preliminary
findings have been corroborated, thanks to larger samples’
numerosity and pooled analyses (62), allowing to reasonably
draw some conclusions. First, pwMS do not appear to have an
increased risk of contracting COVID-19. Older age, male sex,
and the presence of comorbidities negatively affect the infection’s
clinical course in pwMS as in non-MS people. Except for fatigue,
which is expectedly more frequent in pwMS, respiratory and
systemic symptoms did not differ between pwMS and the general
population. Neurological disability and progressive disease
course emerged as linked to COVID-19 severity, consistent
with a frail status of this subgroup of patients.

In general, DMTs showed an acceptable level of safety with
respects to SARS-CoV-2 infection outcomes. Type I IFN
formulations showed a protective effect (in line with the role of
IFNs in restraining SARS-CoV-2 in the early infectious phase).
Instead, a complicated course of COVID-19 occurred more
frequently in the following circumstances: pwMS not receiving
any DMT, cases under therapy with anti-CD20 agents
(ocrelizumab, rituximab), or people who get infected soon after
receiving high-dose corticosteroids (62, 155).

Present knowledge reflects the pandemic scenario during the
first and second waves of SARS-CoV-2 spread. The emergence of
Frontiers in Immunology | www.frontiersin.org 7
variant of concern, potentially endowedwith augmented infectivity
and virulence (156), emphasizes the need of continuing clinical and
epidemiological monitoring of pwMS. Variant selection and the
overall pandemic trend largely depend on ongoing vaccination
campaigns, which have started in late 2020, after the speed approval
of mRNA-based (Pfizer and Moderna) and adenovirus-vectored
formulations (AstraZeneca and Johnson & Johnson’s). Since then,
focus has shifted to ascertain safety and efficacy of the
anti-COVID-19 vaccines in pwMS.

Trials and real-life experienceswithdiverse “traditional” vaccine
formulations (influenza, tetanus, meningococcus, etc.) showed that
active immunization is safe in pwMS.While no specific issues exist
for non-live formulations, administration of live-attenuated
vaccines (such as VZV) should be programmed before starting
DMTsandavoidedduring immunosuppressionowing to the risk of
a productive infection (152, 157). A satisfactory level of safety has
been promptly confirmed for anti-COVID-19 mRNA-based
vaccines: in a study by Achiron et al. (158) on 555 pwMS
receiving Pfizer-BioNTech vaccine, frequency and characteristics
of vaccine-induced adverse events were almost comparable with
non-MS population and more numerous in young people; in a
cohort of 239 pwMS surveyed by Lotan and colleagues (159),
reactions were even less common. Detailed studies on mRNA-
1273 and adenovirus-based vaccines’ safety in pwMS are lacking
and awaited to consolidate clinical indications.

In general, most studies have ruled out an increased long-term
risk of developing MS (160) as well as a short-term risk of
neurological relapse in people with clinically defined MS (161)
following vaccinations. However, some caution should be taken
when vaccinating pwMS with sustained disease activity and/or a
recent clinical or radiological relapse, in which the threshold for
inflammatory exacerbation concomitant to the immunization
stimulus could be lower (162–165). The same could be
hypothesized for people with subclinical CNS inflammation (such
as in radiological isolated syndromes, RIS) or genetically at-risk
individuals during disease prodrome. Havla et al. (166) described
the case of a 28-year-old woman with a familiar history of MS who
developed a sensorimotor syndrome 6 days after the first
administration of BNT162b2 SARS-CoV-2 vaccine. MRI revealed
an active myelitis and non-enhancing, disseminated white matter
lesions in the brain; OCBs were present in the CSF, and a diagnosis
ofMSwasmade. Early data on cohort BNT162b2 vaccination have
not highlighted an increased risk of relapse in the very-short term
(158); in another study on the same vaccine, 15.1% of pwMS
reported worsening or new neurological symptoms that lasted
more than 3 days in 55.6% of cases (159). However, further
investigation on the long term is warranted to establish whether
anti-COVID-19 vaccines’ safety profile is confirmed in MS.

Concerning vaccine efficacy, studies are ongoing that evaluate
serological response as a surrogate of protection against COVID-19
in pwMS. It is known that some DMTs can negatively affect active
immunization. Evidence recently reviewed in (167) indicates that
fingolimod, natalizumab, alemtuzumab, and the anti-CD20
monoclonal antibodies (ocrelizumab, rituximab) may reduce
serological response to “traditional” vaccines (inactivated,
conjugate, toxoid). As presumable and in line with studies on
September 2021 | Volume 12 | Article 755333
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rheumatic diseases, anti-CD20 appears to have the greatest impact
on antibody production, which is partly related to the levels of
circulating B cells at the time of administration (168). Before the
pandemic, no studies had beenconductedonvaccination efficacy in
pwMS receiving the oral B-depleting agent cladribine. Converging
results are coming from studies assessing humoral response
following natural SARS-CoV-2 infection and vaccinations.
Indeed, following COVID-19, lower anti-SARS-CoV-2 IgG titers
were found in pwMS receiving fingolimod or anti-CD20, the being
latter associated to a completely absent response (169–172). Similar
results are coming from observational studies evaluating post-
vaccination COVID-19 serology (displayed in Table 2).
Fingolimod may attenuate (if not abate) humoral response,
especially in pwMS with reduced lymphocyte count at the time of
administration; such response is frequently absent in pwMS
Frontiers in Immunology | www.frontiersin.org 8
receiving ocrelizumab or rituximab, and when present, it depends
on the time interval between the last drug infusion and vaccination.
Other DMTs, including cladribine, did not appear to interfere with
post-COVID-19 or post-vaccination serological response.
Interestingly, the largest study to date evidenced a significantly
higher humoral response to mRNA-1273 vaccine compared to
BNT162b2, suggesting its preferential use in pwMS at risk of
unsuccessful immunization (179).

Beyond humoral response, a critical role in adaptive immunity
to SARS-CoV-2 is exerted by cytotoxic and helper T cells. As
quantitative correlates of serological protection are still unclear,
assessing SARS-CoV-2-specific T-cell response in naturally
infected or vaccinated subjects is of increasing importance, given
that emerging viral variants evading humoral neutralization do
not escape cellular responses (180, 181). They appear even more
TABLE 2 | Studies on COVID-19 vaccination in people with MS (until July 31st, 2021).

Reference Number of
pwMS
(female)

Vaccine Serological assay Meaning

Bigaut
et al. (173)

28 (23) Pfizer-
BioNTech
(BNT162b2)
Moderna
(mRNA-1273)

Abbott or Roche SARS-CoV-2 IgG assay (spike protein),
U/ml

Lower IgG titers in patients treated with anti-CD20 and in
patients treated with fingolimod compared to patients
receiving other DMT or untreated pwMS

Gallo et al.
(174)

4 (1) Pfizer-
BioNTech
(BNT162b2)

LIAISON®SARS-CoV-2 TrimericS-IgG assay (DiaSorin-
S.p.A.), BAU/ml

Quasi-negative serology in four pwMS treated with
ocrelizumab as compared to 55 healthy subjects.

Achiron
et al. (175)

125 (72) Pfizer-
BioNTech
(BNT162b2)

EUROIMMUN (EI, Lubeck, Germany) anti-SARS-CoV-2 IgG
quantitative ELISA

Negative serology in pwMS treated with fingolimod,
irrespective to absolute lymphocyte count
Positive serology in only 22.7% pwMS treated with anti-
CD20
Untreated pwMS and pwMS receiving Cladribine had igG
titers similar to healthy subjects

Buttari
et al. (176)

4 (4) AstraZeneca
(AZD1222)
Pfizer-
BioNTech
(BNT162b2)

unknown Positive serology in 2/2 pwMS receiving Cladribine
Negative serology in 1/2 pwMS receiving Ocrelizumab
(vaccinated 2 months after the last infusion)

Guerreri
et al. (177)

32 (22) Pfizer-
BioNTech
(BNT162b2)
Moderna
(mRNA-1273)

ECLIA electrochemiluminescence immunoassay,
CLIA chemiluminescence immunoassay,
CMIA chemiluminescence microparticle immunoassay

Positive serology in 62.5% pwMS receiving fingolimod and
37.5% pwMS receiving Ocrelizumab

Drulovic
et al. (178)

22 (17) Pfizer-
BioNTech
(BNT162b2)
Beijing/
Sinopharm
(BBIBP-CorV)

ELISA SARS-CoV-2 IgG (INEP, Belgrade, Serbia) Positive serology in 100% pwMS treated with cladribine and
vaccinated with BNT162b2
Positive serology in 42.9% pwMS treated with cladribine and
vaccinated with BBIBP-CorV
Positive serology in 100% pwMS receiving alemtuzumab and
vaccinated with BNT162b2 or BBIBP-CorV
Time since last administration and absolute lymphocyte
count did not affect serological response

Sormani
et al. (179)

780 (517) Pfizer-
BioNTech
(BNT162b2)
Moderna
(mRNA-1273)

Electrochemiluminescence immunoassay (ECLIA) (Elecsys®,
Roche Diagnostics Ltd, Switzerland).

Positive serology in 92.9% pwMS on fingolimod, 43.5% on
ocrelizumab, 64% on rituximab
Lower IgG titers in patients receiving ocrelizumab fingolimod
and rituximab
In pwMS receiving anti-CD20, antibody levels correlate to the
interval from the last infusion to vaccine administration
In pwMS receiving fingolimod, lymphopenia is associated to
lower antibody levels
Vaccination with mRNA-1273 elicited 3.5-fold higher
serological response than with the BNT162b2 vaccine.`
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relevant when antibody production is substantially dampened, as
in the case of B-cell-depleted pwMS. To this regard, preliminary
evidence showed that the majority of pwMS receiving
Ocrelizumab who experienced COVID-19 were able to mount
an efficient and T-cell response toward SARS-CoV-2 (182).
Apostolidis and colleagues (183) performed an extensive
immunological study on 20 B-cell depleted pwMS (19 on
Ocrelizumab and 1 on Rituximab) following mRNA SARS-CoV-
2 vaccination. Besides confirming a significant impairment in
antibody and memory B cell responses, they found a robust T cell
response, with SARS-CoV-2 specific CD8+ expansion exceeding
that of healthy controls, especially in pwMS completely lacking
igG production. These findings are in line with some reported
cases of favorable course of COVID-19 in pwMS receiving anti-
CD20 (184, 185) and reassure about the efficiency of vaccination
in immunocompromised patients. Similar immunological
investigations are awaited in pwMS receiving other DMTs, in
order to get an integrative view on vaccine-induced protection
against COVID-19 to optimize immunization strategies.

To sum up, current evidence favors recommending
administration of SARS-CoV-2 vaccines to pwMS, as the benefit
of protection from COVID-19 largely outweighs the potential
risks; timing with respect to DMTs and type of vaccine should be
tailored case by case by neurologists, taking into account the
clinical history and additional risk factors (186).

CONCLUSIONS

Almost 2 years of SARS-CoV-2 pandemic have profoundly
impacted on medical world and scientific research, including
the field of MS. We believe that the “research rush” triggered by
the novel Coronavirus may propel studies on MS; vice versa,
deepening our knowledge on MS pathogenesis and its
relationship with viral infections could guide the investigations
on COVID-19 immunopathogenesis.

Establishing such a virtuous cycle may be relevant to multiple
aims. Technological advances rapidly mastered to deal with
SARS-CoV-2 could be translated soon to address MS issues: a
prominent example comes from the potential application of
mRNA-based technology to design tolerizing vaccines that
dampen CNS autoimmunity (187). Conversely, some MS
DMTs could be repurposed to manage COVID-19-associated
immune dysregulation. Clinical trials are already ongoing to
Frontiers in Immunology | www.frontiersin.org 9
evaluate IFN-B, fingolimod, dimethylfumarate; additionally,
masitinib (a tyrosine-kinase inhibitor that showed efficacy in
phase 2B/3 trials for progressive MS) has been recently
highlighted as a potent Coronavirus inhibitor (188).

Furthermore, pinpointing the biological substrates of
neuroinflammatory events associated with COVID-19 could
help extend knowledge on MS-associated viruses in the
etiopathogenesis of both conditions. The possibility that SARS-
CoV-2-induced CNS autoimmune syndromes represent a
distinct nosological entity should be evaluated through long-
term studies (189); likewise, large case-control studies are needed
to test a possible association between SARS-CoV-2 infection and
MS development. A long follow-up of pwMS that suffered of
COVID-19 will evaluate a potential inference in disease natural
history, as well as the frequency and manifestation of long-
COVID-19 in these patients. To this aim, it will be crucial to
perform thorough immunological investigations on biological
samples along with epidemiological studies evaluating past
SARS-CoV-2 infection or vaccination as clinical variables.

In its transition to endemicity, COVID-19 is expected to
become a mild disease of the childhood (190). Will a post-
adolescence infection, repeated infection, or vaccine-induced
immunity reshape the future epidemiology of MS? While
dealing with the unprecedented scenario of a newborn virus
pandemic, we might find hints to improve our understanding on
this complex disorder.
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53. Corrêa DG, de Souza Lima FC, da Cruz Bezerra D, Coutinho AC, Hygino da
Cruz LC. COVID-19 Associated With Encephalomyeloradiculitis and
Positive Anti-Aquaporin-4 Antibodies: Cause or Coincidence? Mult Scler J
(2021) 27:973–6. doi: 10.1177/1352458520949988

54. Shaw VC, Chander G, Puttanna A. Neuromyelitis Optica Spectrum Disorder
Secondary to COVID-19. Br J Hosp Med (2020) 81:1–3. doi: 10.12968/
hmed.2020.0401
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